
Algorithm 1 Deutsch-Josza

Require: n length of binary string, f(a) is blackbox that contains a constant or balanced
boolean function

Ensure: oracle determines f(a) type, returns true if constant false if balanced.

1: |x〉⊗n |y〉 → |0〉⊗n |1〉
2: |x〉⊗n |y〉 → 1√

2n+1

∑2n−1
i=0 |i〉 (|0〉 − |1〉)→ |+〉

⊗n |−〉
3: |x〉⊗n |y〉 → |x〉⊗n |y ⊕ f(x)〉 → 1√

2n+1

∑2n−1
i=0 (−1)f(i) |i〉 (|0〉 − |1〉)

4: |x〉⊗n → 1
2n

∑2n−1
j=0 [

∑2n−1
i=0 (−1)i·j+f(i)] |j〉 → |ψ〉

5: result = | 〈ψ|0〉⊗n |2
6: return true?(result == 1)elsefalse

EXPLANATION
1: We consider an n-qubit register x and a 1-qubit register y, denoted as: |x〉⊗n |y〉 where

|x〉⊗n is the collective expression for the tensor product of n qubits. Our compuation basis
is the Z-basis which consists of eigen vectors |0〉 and |1〉. We initialize the two registers: first
one all qubits are in the |0〉 state; the second one, it is in the |1〉 state.

2: Apply the Hadamard gate to all n + 1 qubits. Recall single qubit application: H|0〉 → |+〉
and H|1〉 → |−〉. H-gate allows us thus to put a qubit in supersposition. Now, the formula-
tion to apply H-gate to n qubits expressed collectively is:

H(x, n)→ 1√
2n

∑2n−1
i=0 (−1)x·i |i〉

where |i〉 is n-qubits and i · j is the bitwise inner product with i fixed and j varies over
all combinations in the computational basis. For example, if we let n=2 and apply H to our
first register |00〉:

H(|00〉 , 2)→ 1√
22

∑22−1
i=0 (−1)00·i |i〉 =

1
2
([(−1)00·00] |00〉+ [(−1)00·01] |01〉+ [(−1)00·10] |10〉+ [(−1)00·11] |11〉 =

1
2
(|00〉+ |01〉+ |10〉+ |11〉) =

1
2
(

1
0
0
0

 +

0
1
0
0

 +

0
0
1
0

 +

0
0
0
1

) =

|++〉

This is because in the bitwise inner product, we interpret the values as bits, so for ex-
ample 00 · 00 → 0&0 ⊕ 0&0 = 0, we AND the corresponding bits and XOR the pairs since

1

GF(2,+) is XOR. Hence all our coefficients go to +1. For our purposes, then we can get rid
of the (−1)i·j part and hence our formulation in line 2 for the first register is: 1√

2n

∑2n−1
i=0 |i〉.

For the above: i runs from 0 to 3, so 0,1,2,3 which map to 00,01,10,11 in our computational
basis. In the inner product, we interpret as bits and in the ket we interpret as the tensor
product. In the summations, we have the linear sum of the four 2-qubit tensor products.
However, if we were to change our test and work with a different input, we may leave it
depending on how our coefficients turn out and simplifications we make. If we consider say:
H(|11〉 , 2) then, we must use the general formulation and we compute:

H(x, n) = 1√
2n

∑2n−1
i=0 (−1)x·i |i〉 =

H(|11〉 , 2) = 1
2
([(−1)11·00] |00〉+ [(−1)11·01] |01〉+ [(−1)11·10] |10〉+ [(−1)11·10 |11〉 =

1
2
(|00〉+ (−1) |01〉+ (−1) |10〉+ (−1) |11〉)→ |−−〉

In the algorithm, we have the (|0〉 − |1〉) to account for the one qubit |y〉, so our formu-

lation is as: 1√
2n+1

∑2n−1
i=0 |i〉 (|0〉−|1〉). Which maps our registers from |0〉⊗n |1〉 to |+〉⊗n |−〉.

3: In this step we apply the hidden function or oracle, our unitary transformation that

maps |x〉⊗n |y〉 → |x〉⊗n |y ⊕ f(x)〉. The second register is required in order to compute
with a reversible unitary. In the unitary, we generate the string at random.. for our pur-
poses. All we care about is n and the unitary. There is not much to reformulate from

line 2 to 3: |x〉⊗n |y ⊕ f(x)〉 → 1√
2n+1

∑2n−1
i=0 (−1)f(i) |i〉 (|0〉 − |1〉). Since a ⊕ 0 = a and

a ⊕ 1 = a, we can express |y ⊕ f(x)〉 as (|0〉 − |1〉) ⊕ f(x) since we factor our 1√
2
. Then,

(|0〉− |1〉)⊕f(x)→ (|0⊕ f(x)〉− |1⊕ f(x)〉 → (|f(x)〉− |1⊕ f(x)〉. Since f(x) outputs 0 or
1, (|f(0)〉−|1⊕ f(0)〉 → (|0〉−|1〉) and (|f(1)〉−|1⊕ f(1)〉 → (|1〉−|0〉) or −(|0〉−|1〉). We
can account for f(x) added phase by (−1)f(x). As you can see, we are able to evaluate the
function in parallel. Recall that a qubit in supersposition can be in a continuum of different
states and that a system of n qubits can ”exist in any superposition of the 2n basis states”.
However, for ours purposes, we only care about the different input states in the classical
regime. The tensor product allows us to evaluate f(i) a total of 2n times in one run, which
is contained in our resulting state of step 3 (”the state space of a composite quantum system
is the tensor product of the state spaces of its subsystems”).

4: Here we apply Hadamard gate to only the first register which allows us to measure
in it later in the computational basis. For this, the second register is now irrelevant. Recall
HH= I, H is its own inverse. If f constant, a second application of H should allows us to

measure a probability that the final state is in |+〉⊗n → |0〉⊗n of 1. For n=2 we have:

H(|++〉 , 2) =
∑2n−1

j=0

∑2n−1
i=0 (−1)i·j(−1)f(i) |j〉

2

assuming f(x) is constant and outputs 0 for all inputs, then our formulation simplifies to:∑2n−1
j=0

∑2n−1
i=0 (−1)i·j |j〉 =

1
4
([(−1)00·00 + (−1)00·01 + (−1)00·10 + (−1)00·11] |00〉 + [(−1)01·00 + (−1)01·01 + (−1)01·10 +

(−1)01·11] |01〉 + [(−1)10·00 + (−1)10·01 + (−1)10·10 + (−1)10·11] |10〉 + [(−1)11·00 + (−1)11·01 +
(−1)11·10 + (−1)11·11] |11〉) =

1
4
(4 |00〉+ 0 |01〉 − 0 |10〉+ 0 |11〉) = |00〉 − |10〉 =

1
0
0
0

 = |00〉.

5: Here we would measure the probability that the first register is in state we initialized

it to in step 1: |00〉⊗n and determine if the hidden function is constant or balanced. Because
for constant, the function may output all 0s or all 1s, the coefficient for the first TERM in
the formulation of line 4 would be ±1 and 0 for all the rest. In the computation above for
n=2, we can see clearly that the term |00〉 ends up with a +1 coefficient since we assumed
f(i) = 0∀i and we can see the rest have a coefficient of 0. If we assumed a balanced function
which always outputs a 1, then the coefficient for the first term would be -1 and 0 for all
others. For a balanced function which outputs 0s for half the bits and 1s for the other half,
the the coefficient for the first term would be 0... and hence orthogonal to the initial state

|00〉⊗n, so the probability that that final state vector is in the initialized value would clearly
be 0. This is the interference effect in which wrong results cancel quickly while correct results
are reinforced.

The way measurement is done... we compute the square of the absolute value of the inner
product of the actual final state with the expected state. When we measure, we compute
the probability over the possible classical values in the computational basis.

6: We return our determined corresponding to the type of the hidden function.

In the classical this regime this pruoblem has different approaches. We can solve with at
least two queries for a balanced boolean function. However, for constant, it’s another story.
We can try inspecting bits at random and query O(1

ε
); if the result is the same after two

queries though... we can truncate the algorithm early to determine the type with a % level
of confidence. We also compute the probability that it is constant. However, to obtain 100%
confident answer, we need 2n−1 + 1 queries. So we can appreciate the power of computing
computing in this beautiful algorithm.... with just one run. Below you can see the output
probabilities for a small system using IBM jupyter notebook and python running on real
quantum hardware:

3

REFERENCES
https://www.sciencedirect.com/topics/engineering/boolean-function
https://www.sciencedirect.com/topics/engineering/quantum-parallelism
https://www.sciencedirect.com/topics/engineering/entangled-state
https://www.sciencedirect.com/topics/physics-and-astronomy/quantum-entanglement
https://indico.cern.ch/event/970906/attachments/2151237/3627130/PIQC%20Lecture%204.pdf
https://qiskit.org/textbook/ch-algorithms/deutsch-jozsa.html#4.1-Constant-Oracle-
https://qiskit.org/textbook/what-is-quantum.html#Explaining-the-Double-Quantum-Coin-
Toss
https://www.cl.cam.ac.uk/teaching/0910/QuantComp/notes.pdf

4

